目 录CONTENT

文章目录

TypeScript-函数、范型的使用

小王同学
2023-12-25 / 0 评论 / 0 点赞 / 48 阅读 / 0 字

TypeScript-函数、范型的使用

介绍

函数是JavaScript应用程序的基础。 它帮助你实现抽象层,模拟类,信息隐藏和模块。 在TypeScript里,虽然已经支持类,命名空间和模块,但函数仍然是主要的定义 行为的地方。 TypeScript为JavaScript函数添加了额外的功能,让我们可以更容易地使用。

函数

和JavaScript一样,TypeScript函数可以创建有名字的函数和匿名函数。 你可以随意选择适合应用程序的方式,不论是定义一系列API函数还是只使用一次的函数。

通过下面的例子可以迅速回想起这两种JavaScript中的函数:

// Named function
function add(x, y) {
    return x + y;
}

// Anonymous function
let myAdd = function(x, y) { return x + y; };

在JavaScript里,函数可以使用函数体外部的变量。 当函数这么做时,我们说它‘捕获’了这些变量。 至于为什么可以这样做以及其中的利弊超出了本文的范围,但是深刻理解这个机制对学习JavaScript和TypeScript会很有帮助。

let z = 100;

function addToZ(x, y) {
    return x + y + z;
}

函数类型

为函数定义类型

让我们为上面那个函数添加类型:

function add(x: number, y: number): number {
    return x + y;
}

let myAdd = function(x: number, y: number): number { return x + y; };

我们可以给每个参数添加类型之后再为函数本身添加返回值类型。 TypeScript能够根据返回语句自动推断出返回值类型,因此我们通常省略它。

书写完整函数类型

现在我们已经为函数指定了类型,下面让我们写出函数的完整类型。

let myAdd: (x: number, y: number) => number =
    function(x: number, y: number): number { return x + y; };

首先,我们指定了函数类型的签名 (x: number, y: number) => number,表示这个函数接受两个参数 xy,并返回一个数字类型的结果。

然后,我们使用赋值操作符 = 将一个具体的函数赋值给 myAdd。这个具体的函数定义在一个函数表达式中,形式为 function(x: number, y: number): number { return x + y; }。它接受两个参数 xy,并返回它们的和。

因此,整体来说,这段代码的意思是定义了一个名为 myAdd 的变量,它是一个函数类型的变量,并赋值为一个具体的函数,该函数接受两个数字参数并返回它们的和。你可以使用 myAdd 变量来调用这个函数,并得到相应的结果。

函数类型包含两部分:参数类型和返回值类型。 当写出完整函数类型的时候,这两部分都是需要的。 我们以参数列表的形式写出参数类型,为每个参数指定一个名字和类型。 这个名字只是为了增加可读性。 我们也可以这么写:

let myAdd: (baseValue: number, increment: number) => number =
    function(x: number, y: number): number { return x + y; };

只要参数类型是匹配的,那么就认为它是有效的函数类型,而不在乎参数名是否正确。

第二部分是返回值类型。 对于返回值,我们在函数和返回值类型之前使用( =>)符号,使之清晰明了。 如之前提到的,返回值类型是函数类型的必要部分,如果函数没有返回任何值,你也必须指定返回值类型为 void而不能留空。

函数的类型只是由参数类型和返回值组成的。 函数中使用的捕获变量不会体现在类型里。 实际上,这些变量是函数的隐藏状态并不是组成API的一部分。

推断类型

尝试这个例子的时候,你会发现如果你在赋值语句的一边指定了类型但是另一边没有类型的话,TypeScript编译器会自动识别出类型:

// myAdd has the full function type
let myAdd = function(x: number, y: number): number { return x + y; };

// The parameters `x` and `y` have the type number
let myAdd: (baseValue: number, increment: number) => number =
    function(x, y) { return x + y; };

这叫做“按上下文归类”,是类型推论的一种。 它帮助我们更好地为程序指定类型。

可选参数和默认参数

TypeScript里的每个函数参数都是必须的。 这不是指不能传递 nullundefined作为参数,而是说编译器检查用户是否为每个参数都传入了值。 编译器还会假设只有这些参数会被传递进函数。 简短地说,传递给一个函数的参数个数必须与函数期望的参数个数一致。

function buildName(firstName: string, lastName: string) {
    return firstName + " " + lastName;
}

let result1 = buildName("Bob");                  // error, too few parameters
let result2 = buildName("Bob", "Adams", "Sr.");  // error, too many parameters
let result3 = buildName("Bob", "Adams");         // ah, just right

JavaScript里,每个参数都是可选的,可传可不传。 没传参的时候,它的值就是undefined。 在TypeScript里我们可以在参数名旁使用 ?实现可选参数的功能。 比如,我们想让last name是可选的:

function buildName(firstName: string, lastName?: string) {
    if (lastName)
        return firstName + " " + lastName;
    else
        return firstName;
}

let result1 = buildName("Bob");  // works correctly now
let result2 = buildName("Bob", "Adams", "Sr.");  // error, too many parameters
let result3 = buildName("Bob", "Adams");  // ah, just right

可选参数必须跟在必须参数后面。 如果上例我们想让first name是可选的,那么就必须调整它们的位置,把first name放在后面。

在TypeScript里,我们也可以为参数提供一个默认值当用户没有传递这个参数或传递的值是 undefined时。 它们叫做有默认初始化值的参数。 让我们修改上例,把last name的默认值设置为 "Smith"

function buildName(firstName: string, lastName = "Smith") {
    return firstName + " " + lastName;
}

let result1 = buildName("Bob");                  // works correctly now, returns "Bob Smith"
let result2 = buildName("Bob", undefined);       // still works, also returns "Bob Smith"
let result3 = buildName("Bob", "Adams", "Sr.");  // error, too many parameters
let result4 = buildName("Bob", "Adams");         // ah, just right

在所有必须参数后面的带默认初始化的参数都是可选的,与可选参数一样,在调用函数的时候可以省略。 也就是说可选参数与末尾的默认参数共享参数类型。

function buildName(firstName: string, lastName?: string) {
    // ...
}

function buildName(firstName: string, lastName = "Smith") {
    // ...
}

共享同样的类型 (firstName: string, lastName?: string) => string。 默认参数的默认值消失了,只保留了它是一个可选参数的信息。

与普通可选参数不同的是,带默认值的参数不需要放在必须参数的后面。 如果带默认值的参数出现在必须参数前面,用户必须明确的传入 undefined值来获得默认值。 例如,我们重写最后一个例子,让 firstName是带默认值的参数:

function buildName(firstName = "Will", lastName: string) {
    return firstName + " " + lastName;
}

let result1 = buildName("Bob");                  // error, too few parameters
let result2 = buildName("Bob", "Adams", "Sr.");  // error, too many parameters
let result3 = buildName("Bob", "Adams");         // okay and returns "Bob Adams"
let result4 = buildName(undefined, "Adams");     // okay and returns "Will Adams"

剩余参数

必要参数,默认参数和可选参数有个共同点:它们表示某一个参数。 有时,你想同时操作多个参数,或者你并不知道会有多少参数传递进来。 在JavaScript里,你可以使用 arguments来访问所有传入的参数。

在TypeScript里,你可以把所有参数收集到一个变量里:

function buildName(firstName: string, ...restOfName: string[]) {
  return firstName + " " + restOfName.join(" ");
}

let employeeName = buildName("Joseph", "Samuel", "Lucas", "MacKinzie");

剩余参数会被当做个数不限的可选参数。 可以一个都没有,同样也可以有任意个。 编译器创建参数数组,名字是你在省略号( ...)后面给定的名字,你可以在函数体内使用这个数组。

这个省略号也会在带有剩余参数的函数类型定义上使用到:

function buildName(firstName: string, ...restOfName: string[]) {
  return firstName + " " + restOfName.join(" ");
}

let buildNameFun: (fname: string, ...rest: string[]) => string = buildName;

this

学习如何在JavaScript里正确使用 this就好比一场成年礼。 由于TypeScript是JavaScript的超集,TypeScript程序员也需要弄清 this工作机制并且当有bug的时候能够找出错误所在。 幸运的是,TypeScript能通知你错误地使用了 this的地方。 如果你想了解JavaScript里的 this是如何工作的,那么首先阅读Yehuda Katz写的Understanding JavaScript Function Invocation and "this"。 Yehuda的文章详细的阐述了 this的内部工作原理,因此我们这里只做简单介绍。

this和箭头函数

JavaScript里,this的值在函数被调用的时候才会指定。 这是个既强大又灵活的特点,但是你需要花点时间弄清楚函数调用的上下文是什么。 但众所周知,这不是一件很简单的事,尤其是在返回一个函数或将函数当做参数传递的时候。

下面看一个例子:

let deck = {
    suits: ["hearts", "spades", "clubs", "diamonds"],
    cards: Array(52),
    createCardPicker: function() {
        return function() {
            let pickedCard = Math.floor(Math.random() * 52);
            let pickedSuit = Math.floor(pickedCard / 13);

            return {suit: this.suits[pickedSuit], card: pickedCard % 13};
        }
    }
}

let cardPicker = deck.createCardPicker();
let pickedCard = cardPicker();

alert("card: " + pickedCard.card + " of " + pickedCard.suit);

可以看到 createCardPicker是个函数,并且它又返回了一个函数。 如果我们尝试运行这个程序,会发现它并没有弹出对话框而是报错了。 因为 createCardPicker返回的函数里的 this被设置成了 window而不是 deck对象。 因为我们只是独立的调用了 cardPicker()。 顶级的非方法式调用会将 this视为 window。 (注意:在严格模式下, thisundefined而不是 window)。

为了解决这个问题,我们可以在函数被返回时就绑好正确的 this。 这样的话,无论之后怎么使用它,都会引用绑定的‘deck’对象。 我们需要改变函数表达式来使用ECMAScript 6箭头语法。 箭头函数能保存函数创建时的 this值,而不是调用时的值:

let deck = {
    suits: ["hearts", "spades", "clubs", "diamonds"],
    cards: Array(52),
    createCardPicker: function() {
        // NOTE: the line below is now an arrow function, allowing us to capture 'this' right here
        return () => {
            let pickedCard = Math.floor(Math.random() * 52);
            let pickedSuit = Math.floor(pickedCard / 13);

            return {suit: this.suits[pickedSuit], card: pickedCard % 13};
        }
    }
}

let cardPicker = deck.createCardPicker();
let pickedCard = cardPicker();

alert("card: " + pickedCard.card + " of " + pickedCard.suit);

这段代码是一个简单的模拟扑克牌的程序。让我用通俗易懂的方式解释一下:

首先,我们有一个对象叫做 deck,它代表一副扑克牌。deck对象有两个属性:

  1. suits:代表四种花色(红桃、黑桃、梅花、方块)的数组。
  2. cards:一个长度为52的数组,用于存储扑克牌。

接下来,deck对象还有一个方法叫做 createCardPicker,它返回一个函数。这个函数是一个箭头函数,它能够捕获当前的 this上下文。

createCardPicker方法内部,我们定义了一个箭头函数,它被返回并赋值给 cardPicker变量。当我们调用 cardPicker时,它会执行箭头函数内的代码。

箭头函数内部的代码首先生成一个随机数 pickedCard,范围在0到51之间。然后,根据 pickedCard计算出所选扑克牌的花色 pickedSuit,通过除以13来确定。

最后,箭头函数返回一个对象,包含了所选扑克牌的花色和点数。花色通过 this.suits[pickedSuit]deck对象的 suits数组中获取,点数通过 pickedCard % 13计算得到。

最后一行代码使用 alert函数弹出一个对话框,显示所选扑克牌的点数和花色。

更好事情是,TypeScript会警告你犯了一个错误,如果你给编译器设置了 --noImplicitThis标记。 它会指出 this.suits[pickedSuit]里的 this的类型为 any

this参数

不幸的是,this.suits[pickedSuit]的类型依旧为 any。 这是因为 this来自对象字面量里的函数表达式。 修改的方法是,提供一个显式的 this参数。 this参数是个假的参数,它出现在参数列表的最前面:

function f(this: void) {
    // make sure `this` is unusable in this standalone function
}

让我们往例子里添加一些接口,CardDeck,让类型重用能够变得清晰简单些:

interface Card {
    suit: string;
    card: number;
}
interface Deck {
    suits: string[];
    cards: number[];
    createCardPicker(this: Deck): () => Card;
}
let deck: Deck = {
    suits: ["hearts", "spades", "clubs", "diamonds"],
    cards: Array(52),
    // NOTE: The function now explicitly specifies that its callee must be of type Deck
    createCardPicker: function(this: Deck) {
        return () => {
            let pickedCard = Math.floor(Math.random() * 52);
            let pickedSuit = Math.floor(pickedCard / 13);

            return {suit: this.suits[pickedSuit], card: pickedCard % 13};
        }
    }
}

let cardPicker = deck.createCardPicker();
let pickedCard = cardPicker();

alert("card: " + pickedCard.card + " of " + pickedCard.suit);

现在TypeScript知道 createCardPicker期望在某个 Deck对象上调用。 也就是说 thisDeck类型的,而非 any,因此 --noImplicitThis不会报错了。

this参数在回调函数里

你可以也看到过在回调函数里的 this报错,当你将一个函数传递到某个库函数里稍后会被调用时。 因为当回调被调用的时候,它们会被当成一个普通函数调用, this将为 undefined。 稍做改动,你就可以通过 this参数来避免错误。 首先,库函数的作者要指定 this的类型:

interface UIElement {
    addClickListener(onclick: (this: void, e: Event) => void): void;
}

this: void 表示 addClickListener 函数期望 onclick 参数是一个不需要 this 类型的函数。换句话说,它不依赖于特定的对象作为函数的执行上下文。

在调用 addClickListener 的代码中,使用 this 关键字对上下文进行注解。

class Handler {
    info: string;
    onClickBad(this: Handler, e: Event) {
        // oops, used this here. using this callback would crash at runtime
        this.info = e.message;
    }
}
let h = new Handler();
uiElement.addClickListener(h.onClickBad); // error!

在这段代码中,出现错误是因为在将 h.onClickBad 作为回调函数传递给 uiElement.addClickListener 时,没有正确处理函数中的 this 上下文。

onClickBad 函数中,使用了 this.info 来访问 Handler 类的实例属性。但是,当你将 onClickBad 作为回调函数传递给 uiElement.addClickListener 时,函数的执行上下文会发生变化,this 将不再指向 Handler 的实例。

指定了 this类型后,你显式声明 onClickBad必须在 Handler的实例上调用。 然后TypeScript会检测到 addClickListener要求函数带有 this: void。 改变 this类型来修复这个错误:

class Handler {
    info: string;
    onClickGood(this: void, e: Event) {
        // can't use this here because it's of type void!
        console.log('clicked!');
    }
}
let h = new Handler();
uiElement.addClickListener(h.onClickGood);

因为 onClickGood指定了 this类型为 void,因此传递 addClickListener是合法的。 当然了,这也意味着不能使用 this.info. 如果你两者都想要,你不得不使用箭头函数了:

class Handler {
    info: string;
    onClickGood = (e: Event) => { this.info = e.message }
}

这是可行的因为箭头函数不会捕获 this,所以你总是可以把它们传给期望 this: void的函数。 缺点是每个 Handler对象都会创建一个箭头函数。 另一方面,方法只会被创建一次,添加到 Handler的原型链上。 它们在不同 Handler对象间是共享的。

重载

JavaScript本身是个动态语言。 JavaScript里函数根据传入不同的参数而返回不同类型的数据是很常见的。

let suits = ["hearts", "spades", "clubs", "diamonds"];

function pickCard(x): any {
    // Check to see if we're working with an object/array
    // if so, they gave us the deck and we'll pick the card
    if (typeof x == "object") {
        let pickedCard = Math.floor(Math.random() * x.length);
        return pickedCard;
    }
    // Otherwise just let them pick the card
    else if (typeof x == "number") {
        let pickedSuit = Math.floor(x / 13);
        return { suit: suits[pickedSuit], card: x % 13 };
    }
}

let myDeck = [{ suit: "diamonds", card: 2 }, { suit: "spades", card: 10 }, { suit: "hearts", card: 4 }];
let pickedCard1 = myDeck[pickCard(myDeck)];
alert("card: " + pickedCard1.card + " of " + pickedCard1.suit);

let pickedCard2 = pickCard(15);
alert("card: " + pickedCard2.card + " of " + pickedCard2.suit);

pickCard方法根据传入参数的不同会返回两种不同的类型。 如果传入的是代表纸牌的对象,函数作用是从中抓一张牌。 如果用户想抓牌,我们告诉他抓到了什么牌。 但是这怎么在类型系统里表示呢。

方法是为同一个函数提供多个函数类型定义来进行函数重载。 编译器会根据这个列表去处理函数的调用。 下面我们来重载 pickCard函数。

let suits = ["hearts", "spades", "clubs", "diamonds"];

function pickCard(x: {suit: string; card: number; }[]): number;
function pickCard(x: number): {suit: string; card: number; };
function pickCard(x): any {
    // Check to see if we're working with an object/array
    // if so, they gave us the deck and we'll pick the card
    if (typeof x == "object") {
        let pickedCard = Math.floor(Math.random() * x.length);
        return pickedCard;
    }
    // Otherwise just let them pick the card
    else if (typeof x == "number") {
        let pickedSuit = Math.floor(x / 13);
        return { suit: suits[pickedSuit], card: x % 13 };
    }
}

let myDeck = [{ suit: "diamonds", card: 2 }, { suit: "spades", card: 10 }, { suit: "hearts", card: 4 }];
let pickedCard1 = myDeck[pickCard(myDeck)];
alert("card: " + pickedCard1.card + " of " + pickedCard1.suit);

let pickedCard2 = pickCard(15);
alert("card: " + pickedCard2.card + " of " + pickedCard2.suit);

这样改变后,重载的 pickCard函数在调用的时候会进行正确的类型检查。

为了让编译器能够选择正确的检查类型,它与JavaScript里的处理流程相似。 它查找重载列表,尝试使用第一个重载定义。 如果匹配的话就使用这个。 因此,在定义重载的时候,一定要把最精确的定义放在最前面。

注意,function pickCard(x): any并不是重载列表的一部分,因此这里只有两个重载:一个是接收对象另一个接收数字。 以其它参数调用 pickCard会产生错误。

范型

介绍

软件工程中,我们不仅要创建一致的定义良好的API,同时也要考虑可重用性。 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵活的功能。

在像C#和Java这样的语言中,可以使用 泛型来创建可重用的组件,一个组件可以支持多种类型的数据。 这样用户就可以以自己的数据类型来使用组件。

泛型之Hello World

下面来创建第一个使用泛型的例子:identity函数。 这个函数会返回任何传入它的值。 你可以把这个函数当成是 echo命令。

不用泛型的话,这个函数可能是下面这样:

function identity(arg: number): number {
    return arg;
}

或者,我们使用 any类型来定义函数:

function identity(arg: any): any {
    return arg;
}

使用 any类型会导致这个函数可以接收任何类型的 arg参数,这样就丢失了一些信息:传入的类型与返回的类型应该是相同的。如果我们传入一个数字,我们只知道任何类型的值都有可能被返回。

因此,我们需要一种方法使返回值的类型与传入参数的类型是相同的。 这里,我们使用了 类型变量,它是一种特殊的变量,只用于表示类型而不是值。

function identity<T>(arg: T): T {
    return arg;
}

我们给identity添加了类型变量 TT帮助我们捕获用户传入的类型(比如:number),之后我们就可以使用这个类型。 之后我们再次使用了 T当做返回值类型。现在我们可以知道参数类型与返回值类型是相同的了。 这允许我们跟踪函数里使用的类型的信息。

我们把这个版本的 identity函数叫做泛型,因为它可以适用于多个类型。 不同于使用 any,它不会丢失信息,像第一个例子那像保持准确性,传入数值类型并返回数值类型。

我们定义了泛型函数后,可以用两种方法使用。 第一种是,传入所有的参数,包含类型参数:

let output = identity<string>("myString"); // type of output will be 'string'

这里我们明确的指定了 Tstring类型,并做为一个参数传给函数,使用了 <>括起来而不是 ()

第二种方法更普遍。利用了_类型推论_ -- 即编译器会根据传入的参数自动地帮助我们确定T的类型:

let output = identity("myString"); // type of output will be 'string'

注意我们没必要使用尖括号(<>)来明确地传入类型;编译器可以查看 myString的值,然后把 T设置为它的类型。 类型推论帮助我们保持代码精简和高可读性。如果编译器不能够自动地推断出类型的话,只能像上面那样明确的传入T的类型,在一些复杂的情况下,这是可能出现的。

使用泛型变量

使用泛型创建像 identity这样的泛型函数时,编译器要求你在函数体必须正确的使用这个通用的类型。 换句话说,你必须把这些参数当做是任意或所有类型。

看下之前 identity例子:

function identity<T>(arg: T): T {
    return arg;
}

如果我们想同时打印出 arg的长度。 我们很可能会这样做:

function loggingIdentity<T>(arg: T): T {
    console.log(arg.length);  // Error: T doesn't have .length
    return arg;
}

如果这么做,编译器会报错说我们使用了 arg.length属性,但是没有地方指明 arg具有这个属性。 记住,这些类型变量代表的是任意类型,所以使用这个函数的人可能传入的是个数字,而数字是没有 .length属性的。

现在假设我们想操作 T类型的数组而不直接是 T。由于我们操作的是数组,所以 .length属性是应该存在的。 我们可以像创建其它数组一样创建这个数组:

function loggingIdentity<T>(arg: T[]): T[] {
    console.log(arg.length);  // Array has a .length, so no more error
    return arg;
}

你可以这样理解 loggingIdentity的类型:泛型函数 loggingIdentity,接收类型参数 T和参数 arg,它是个元素类型是 T的数组,并返回元素类型是 T的数组。 如果我们传入数字数组,将返回一个数字数组,因为此时 T的的类型为 number。 这可以让我们把泛型变量T当做类型的一部分使用,而不是整个类型,增加了灵活性。

我们也可以这样实现上面的例子:

function loggingIdentity<T>(arg: Array<T>): Array<T> {
    console.log(arg.length);  // Array has a .length, so no more error
    return arg;
}

使用过其它语言的话,你可能对这种语法已经很熟悉了。 在下一节,会介绍如何创建自定义泛型像 Array<T>一样。

泛型类型

上一节,我们创建了identity通用函数,可以适用于不同的类型。 在这节,我们研究一下函数本身的类型,以及如何创建泛型接口。

泛型函数的类型与非泛型函数的类型没什么不同,只是有一个类型参数在最前面,像函数声明一样:

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: <T>(arg: T) => T = identity;

我们也可以使用不同的泛型参数名,只要在数量上和使用方式上能对应上就可以。

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: <U>(arg: U) => U = identity;

我们还可以使用带有调用签名的对象字面量来定义泛型函数:

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: {<T>(arg: T): T} = identity;

这引导我们去写第一个泛型接口了。 我们把上面例子里的对象字面量拿出来做为一个接口:

interface GenericIdentityFn {
    <T>(arg: T): T;
}

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: GenericIdentityFn = identity;

一个相似的例子,我们可能想把泛型参数当作整个接口的一个参数。 这样我们就能清楚的知道使用的具体是哪个泛型类型(比如: Dictionary<string>而不只是Dictionary)。 这样接口里的其它成员也能知道这个参数的类型了。

interface GenericIdentityFn<T> {
    (arg: T): T;
}

function identity<T>(arg: T): T {
    return arg;
}

let myIdentity: GenericIdentityFn<number> = identity;

注意,我们的示例做了少许改动。 不再描述泛型函数,而是把非泛型函数签名作为泛型类型一部分。 当我们使用 GenericIdentityFn的时候,还得传入一个类型参数来指定泛型类型(这里是:number),锁定了之后代码里使用的类型。 对于描述哪部分类型属于泛型部分来说,理解何时把参数放在调用签名里和何时放在接口上是很有帮助的。

除了泛型接口,我们还可以创建泛型类。 注意,无法创建泛型枚举和泛型命名空间。

泛型类

泛型类看上去与泛型接口差不多。 泛型类使用( <>)括起泛型类型,跟在类名后面。

class GenericNumber<T> {
    zeroValue: T;
    add: (x: T, y: T) => T;
}

let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue = 0;
myGenericNumber.add = function(x, y) { return x + y; };

GenericNumber类的使用是十分直观的,并且你可能已经注意到了,没有什么去限制它只能使用 number类型。 也可以使用字符串或其它更复杂的类型。

let stringNumeric = new GenericNumber<string>();
stringNumeric.zeroValue = "";
stringNumeric.add = function(x, y) { return x + y; };

console.log(stringNumeric.add(stringNumeric.zeroValue, "test"));

与接口一样,直接把泛型类型放在类后面,可以帮助我们确认类的所有属性都在使用相同的类型。

我们在那节说过,类有两部分:静态部分和实例部分。 泛型类指的是实例部分的类型,所以类的静态属性不能使用这个泛型类型。

泛型约束

你应该会记得之前的一个例子,我们有时候想操作某类型的一组值,并且我们知道这组值具有什么样的属性。 在 loggingIdentity例子中,我们想访问 arglength属性,但是编译器并不能证明每种类型都有 length属性,所以就报错了。

function loggingIdentity<T>(arg: T): T {
    console.log(arg.length);  // Error: T doesn't have .length
    return arg;
}

相比于操作any所有类型,我们想要限制函数去处理任意带有 .length属性的所有类型。 只要传入的类型有这个属性,我们就允许,就是说至少包含这一属性。 为此,我们需要列出对于T的约束要求。

为此,我们定义一个接口来描述约束条件。 创建一个包含 .length属性的接口,使用这个接口和 extends关键字来实现约束:

interface Lengthwise {
    length: number;
}

function loggingIdentity<T extends Lengthwise>(arg: T): T {
    console.log(arg.length);  // Now we know it has a .length property, so no more error
    return arg;
}

现在这个泛型函数被定义了约束,因此它不再是适用于任意类型:

loggingIdentity(3); // Error, number doesn't have a .length property

我们需要传入符合约束类型的值,必须包含必须的属性:

loggingIdentity({length: 10, value: 3});

在泛型约束中使用类型参数

你可以声明一个类型参数,且它被另一个类型参数所约束。 比如,现在我们想要用属性名从对象里获取这个属性。 并且我们想要确保这个属性存在于对象 obj上,因此我们需要在这两个类型之间使用约束。

function getProperty(obj: T, key: K) {
    return obj[key];
}

let x = { a: 1, b: 2, c: 3, d: 4 };

getProperty(x, "a"); // okay
getProperty(x, "m"); // error: Argument of type 'm' isn't assignable to 'a' | 'b' | 'c' | 'd'.

在泛型里使用类类型

在TypeScript使用泛型创建工厂函数时,需要引用构造函数的类类型。比如,

function create<T>(c: {new(): T; }): T { return new c(); }

一个更高级的例子,使用原型属性推断并约束构造函数与类实例的关系。

class BeeKeeper {
    hasMask: boolean;
}

class ZooKeeper {
    nametag: string;
}

class Animal {
    numLegs: number;
}

class Bee extends Animal {
    keeper: BeeKeeper;
}

class Lion extends Animal {
    keeper: ZooKeeper;
}

function createInstance<A extends Animal>(c: new () => A): A {
    return new c();
}

createInstance(Lion).keeper.nametag;  // typechecks!
createInstance(Bee).keeper.hasMask;   // typechecks!
0
TS
  1. 支付宝打赏

    qrcode alipay
  2. 微信打赏

    qrcode weixin

评论区